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1. Introduction 
Galactosemia is a metabolic disorder due to absence of 

enzymes involved in galactose metabolism. There are 

three enzymes which are primarily involved in Leloir 

pathway Galactose-1-phosphate uridyl transferase 

(GALT), mutarotase and Galactokinase (GALK1) [1]. The 

various pathways involved in galactose metabolism are 

elucidated in Figure 1.  It is an autosomal recessive 

disorder and the most common mutation which has been 

detected in GALT gene is Q188R and N314D. It occurs 

closest to the active site [2]. Galactosemia is of three types 
based on the affected enzyme of the Leloir Pathway. In 

this paper we are primarily going to discuss about 

Classical galactosemia which is due to the mutation of 

GALT enzyme. Due to lack of GALT enzyme, aldose 

reductase enzyme acts on galactose to convert it to 

galactitol. High levels of galactitol can act as 

metabotoxin, neurotoxin and hepatotoxin.The common 

mutations in GALT gene as confirmatory test for 

diagnosis of galactosemia is mostly 
S135L,Q188R,K285N and N314D variant [3].  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: These are the different pathways of Galactose 

metabolism. Galactose is involved in Leloir pathway in 

the presence of GALT enzyme. In the absence of GALT 

enzyme galactose is converted to galactitol by the action 

of Aldose Reductase enzyme [1]  
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2. Materials and methods 

Figure 2: Workflow followed in this study 

  
2.1 Data Retrieval  

The data was retrieved in FASTA format from UniProt. 

The accession number of the GALT sequence is P07902 
[4]. The most incidences of mutations were observed in 
GALT gene with over 300 mutations [5]. The most 

frequently observed point mutations are Q188R, K285N, 

S135L, and N314D [6]. 

 

2.2 Generation of mutations patterns   

Software called Mutater was used to create 

mutated sequences of the protein sequence. 

These were then stored in .txt format [7]. Protein 

Variation Effect Analyzer (PROVEAN) was 

used in order to understand the nature of the 

mutations and to predict the effect of a 

mutation on the amino acid sequence [8]. Its 

prediction cut-off value is -2.5. 

 

2.3 Multiple sequence alignment (MSA)  

Multiple sequence alignment was done to find the 

similarity in unaltered sequence point-mutated sequences 
[9]. It also helped in understanding the evolutionary 

relationship via the cladogram construct. In Clustal 

omega the alignments are finally compiled by the 

alignment of two profile Hidden Markov Models (HMM) 
[10]. The output of the MSA was viewed on MView. It 

gives the results in a color-coded manner which is easier 

to interpret [11].   

 

2.4 Homology modelling  

Phyre2 was used for homology modelling [12]. Phyre2 is 

an updated version of Phyre. It has functionality to 
predict the 3D protein model by phenotypic expression 

of the point mutation [13]. Hence, this was well-suited for 

our study.   

2.5 Docking studies  

Molecular docking studies were performed using 

PatchDock [14, 15, 16, 17] and refinement of energy of the 

models using Firedock [18, 19]. The clustering RMSD was 

a default value of 4.0. The Patchdock server does rigid 
protein-protein docking. The top 10 models generated 

were refined on the basis of their binding energy or 

Gibbs free energy and the best output was chosen from 

Firedock. The 2D interaction diagram was viewed and 

enumerated using Discovery Studio [20]. 

 

3. Results and discussion 

The software Mutater gave the mutated sequences off 

which the 3D models were generated using Phyre2. The 

MSA was done on Clustal Omega. The mutations 

N314D and S135L belong to the same branch like 

K285N and Q188R. The cladogram construct has been 

illustrated in Figure 3.  

 Figure 3: Cladogram construct via Clustal 

Omega  

PROVEAN is a web-server used to predict the 

result of the mutation on a sequence and classifies 

them as either neutral or deleterious. The cut off 
score is -2.5. Any value above -2.5is considered as 

a neutral mutation. As concluded in Table 1, out of 

the 4 mutations considered only the substitution of 
N314D produced a neutral effect. This might 

suggest that K285N, Q188R and S135L are the 

ones that might be linked to causing a perturbation 

in galactose metabolism in galactosemia. 

 

Table 1: PROVEAN results which classify 

mutations as deleterious or neutral  

 

The 3D model of the sequences was constructed using 

Phyre2. The best model with highest percentage 

similarity and best resolution were chosen for further 

studies. The results obtained from Phyre2 are summarised 

in Table 2. The percentage identity of the template and 

the amino acid sequence for a good accuracy model is  
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Sl 

No 

Variant PROVEAN 

Score 

Predic-

tion 

(cutoff 

= -2.5) 

1 K285N -4.075 Delete-

rious 

2 N314D 0.590 Neutral 

3 Q188R -3.901 Delete-

rious 

4 S135L -4.701 Delete-

rious 
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Table 2: Homology modelling results from Phyre2  

Name of 

protein 

3D structure Percentage identity 

(between template and 

sequence) 

Secondary structure and Disorder 

Prediction curated results 

  

Unmu-

tated 

GALT 

 

  

56% 

  

Disordered (20%) 

Alpha helix (23%) 

Beta strand (19%) 

  

K285N 

 

  

56% 

  

Disordered (20%) 

Alpha helix (23%) 

Beta strand (19%) 

  

N314D 

 

  

56% 

  

Disordered (20%) 

Alpha helix (24%) 

Beta strand (18%) 

  

Q188R 

 

  

56% 

Disordered (21%) 

Alpha helix (23%) 

Beta strand (19%) 

  

S135L 

 

  

56% 

  

Disordered (21%) 

Alpha helix (24%) 

Beta strand (19%) 

supposed to be in the 30-40% range. The secondary 

structure and disorder prediction of the template has 

been summarised. The alpha helixes have been repre-

sented by green helixes, beta sheets are indicated by 

the blue arrows and the faint lines signify the coils. 

The SS confidence indicates the confidence in the 

alignment; red for high accuracy and blue for least. 

The secondary structure and disorder results are cumu-

lated and the percentage of the alpha helixes, beta 

sheets and the disordered amino acids are accounted. 

This also infers that the single point mutation doesn’t 

contribute much to the overall identity of the resulting 

structure. Further, we estimated the interactions of the 

mutant and mutant; unmutated and mutant protein struc-

tures. The docking interactions are summarised as expli-

cated in Table 3. The docking interactions were pre-

dicted using Patchdock. The refinement of the top 10 

structures generated was then sent to Firedock for fur-

ther energy minimisation and structure refinements. Out 

of the 10 combinations considered, the good interaction 



 

17  

Int. J. Fund. Appl. Sci. Vol. 7, No. 3(2018) 14-18 Interactions between variants of GALT in Galactosemia 

Table 3: The interpretation of docking results from Patchdock and Firedock  

Proteins 

involved 

 Docked Model  2D interaction 

diagram 

Ligand and Protein 

atom involved in HB 

Global Energy- 

GE (Kcal/mol) 

HB contribution 

to GE (Kcal/mol) 

 N314D 

and 

S135L 

  

  

Ala 153 with reactive 

O; Glu 146, Pro 145 

with Nitro group 

  

-202.44 

  

-7.57 

  

N314D 

and 

Q188R 

  

  

Arg 359 with reac-

tive O; Lys 229 with 

Nitro group 

  

  

-187.81 

  

-5.74 

  

N314D 

and 

K285N 

  
 

  

No diagram 

observed 

  

None 

  

-194.28 

  

-7.91 

 GALT 

non-

mutated 

(NM) 

and 
Q188R   

  

  

Glu 174 with reactive 

O and N groups 

  

-180.74 

  

-8.94 

  

K285N 

and 

Q188R 

  

 

  

No diagram 

observed 

  

None 

  

-167.14 

  

-8.01 

  

N314D 

and 

GALT 

NM 
  

  

  

Asp 287 with reac-

tive Nitro group 

  

-204.38 

  

-7.71 

  

GALT 

NM and 

K285N 

  

 

  

No diagram 

observed 

  

None 

  

-198.90 

  

-6.83 

  

GALT 

NM and  

S135L 

  
 

  

No diagram 

observed 

  

None 

  

-206.97 

  

-7.88 

 Q188R 

and 

S135L 

  
  

 No diagram 

observed 

 None  -191.27  -4.63 

 K285N 

and 

S135L 

  

  

 No diagram 

observed 

  

 None  -196.2  -6.67 
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The interactions between neutral mutation N314D was 

seen with S135L, Q188R and the unmutated GALT 

protein with very good hydrogen bonding interactions. 

N314D on the other hand showed no interactions with 

K285N even though there was a good binding interaction 
of -194.28 Kcal/mol predicted using Firedock. None of 

the other combinations showed any noticeable 

interactions. The neutral effect mutation N314D shows 

interaction with other subtypes except K285N. This 

study helps us to conclude that the mutated forms and 

unmutated forms interact predominantly with the N314D 

mutated structures. We can predict that N314D mutated 

structures will be present in most galactosemia incidents 

for most patients. Further studies would be required to 

elucidate the interactions at the molecular level in the 

model organisms like Mus musculus and then conclude 

these preliminary findings. 
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